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NASA TT F-10,480 

INVESTIGATION OF T€B now PAST EILIETICAL CONES 

A. I. Shvets 

Wind-tunnel invest igat ion of the flow pas t  s i x  models 
of an e l l i p t i c  cone a t  Mach numbers of 0.58, 0.97, 1.19, 1.47 

6 6 
and 3.0, and Reynolds numbers ranging from 1.2X10 t o  3.OXlO . 
The pressure d i s t r i b u t i o n s  a t  the surface of the models and 
the  q u a n t i t i e s  characterizing the flow parameters i n  the work- 
ing sect ion of the tunnel a re  p lo t ted  and discussed. 
small supersonic Mach numbers, it i s  found t h a t  the shock wave 
f ront  f o r  a l l  the  models employed has the form of an almost 
regular  c i r c u l a r  cone and t h a t  the l o c a l  angle of a shock wave 
depends more on the d i s t r i b u t i o n  of the cross sect ion along 
the axis of the body than on the shape of the body’s cross 
section. With increasing Mach number, the shape of the shock 
wave i n  the cross sect ion normal t o  the flow d i rec t ion  ap- 
p i w a \ r u L o  u r ~ v  ~f the  b&y. 

For the 

--Annh^” CL + 

This a r t i c l e  describes the experimental inves t iga t ions  of a three-  p30* 
dimensional flow pas t  e l l i p t i c  cones. The experimental r e s u l t s  a re  compared 
with t h e o r e t i c a l  r e s u l t s  and with r e s u l t s  published by other  inves t iga tors .  

A n  e l l i p t i c a l  cone occupies an intermediate pos i t ion  between a c i r c u l a r  
cone and a t r iangular  p l a t e  and may serve as an example when comparison i s  
made of flows around bodies which do not have a x i a l  symmetry. I n  recent years 
a la rge  number of t h e o r e t i c a l  works (S. Maslen, R. Val’o-Laurin, R. Jones, F. 
Mur, V. Harley e t  al.) and experimental works (A. F e r r i ,  U. Rege, V. G. Tabach- 
nikov, Eggers and Allen e t  al.) on the flaw p a s t  conical nonsymmetric bodies 
have been published. 

The inves t iga t ions  were conducted on a wind tunnel of momentary ac t ion  a t  
Mach numbers Mz0.58, 0.97, 1.19, 1.47 and 3.0. 
t r i b u t i o n s  on the surface of t h e  models and the quant i t ies  character iz ing the 
flow parameters i n  the operating region were measured during the t e s t s .  
Reynolds numbers reduced t o  0.1 m and computed from the parameters of the i n c i -  

dent flow were measured from 1.2~10 6 with ~ = 0 . 5 8  and up t o  3.OXlO 6 with M=3.O. 
The experiments were carr ied out  wi th  the angles of a t tack  a ranging from 0 t o  
13’ and tilt angles ‘p ranging from 0 t o  45’. 
0, 5, 10 and 15O. 

The magnitudes of pressure d i s -  

The 

The s l i p  angles f3 had values of 

S ix  models of e l l i p t i c a l  cones were fabricated from s t e e l  f o r  the experi- 
ments. 
of t h e  e l l i p t i c a l  cones: 

The following quant i t ies  were selected as  the c h a r a c t e r i s t i c  parameters 
the r a t i o  of the semi-axes of the  e l l i p s e  t=b/a and 

* 
Numbers given i n  margin indicate  pagination i n  o r i g i n a l  foreign t e x t .  
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the magnitude of the ha l f  angle a t  the apex of the  cone i n  the plane of the  
major axis  e (fig.  1). Models 1, 2, 3 and 4 had a constant value f o r  t h e  ha l f -  
angle €=30°, but d i f fe ren t  r a t i o s  of the semiaxes: ko.66, 0.5, 0.33, 0.2. 
I n  models 2, 5 and 6 the r a t i o  of the  semiaxes was kept constant t = O . 5 ,  while 
the half-angle had the  values €=30°, 22'30' and 15'. 
the major axis of t h e  e l l i p s e  was equal t o  70 mm a t  the  base of the  cone. Each 
cone had a 21 vent hole with a diameter of 0.5 mm. The vent points  were 
s i tua ted  on 8 generatr ix  cones arranged i n  such a way t h a t  the  pressure d i s t r i -  
bution near the plane of the  major axis could be measured as accurately a s  pos- 
s i b l e .  I n  addi t ion t o  t h i s ,  i n  order t o  check the conic i ty  of the flow, the  
vent points  were arranged on the  generatrixes a t  3 cross sect ions along the 
length of the cone 1 (0.581, 0.74 1, 0.9 1). 

For a l l  of the  models, 

The experimental values of the  pressure coef f ic ien t  c f o r  a l l  t e s t  models 

a t  M=3.0 a re  shown i n  f igure 1. When the angle of a t tack  i s  0 there  i s  a pres- 
sure increase i n  the region of the generatrixes lying near the plane of the 
major a x i s  of the cones e l l i p t i c a l  cross sect ion ($=90°). 
the cone and the  angle E a r e  decreased there  i s  a drop i n  the pressure along 
the l a t e r a l  surface of the model. Figure 1 shows the r e s u l t s  of experiments 
conducted by A. L. Gonor ( re f .  1) f o r  an e l l i p t i c a l  cone with t = O . 5 ,  €=14'30' 
a t  Mach number M=3.O and f o r  a cone with ko.66, €=30'50' a t  Mach number M=3.53 
(squares) and a l so  experimental data  ( ref .  2) f o r  a model with t=0.561, e=22' 
a t  Mach number Mz3.09 ( t r i a n g l e s ) .  

P 

A s  the thickness of 

/131 

I n  the range M=O.58-1.19 there  i s  a 
subs tan t ia l  decrease i n  pressure away from 
the apex of the cone on a l l  generatr ixes  
of the e l l i p t i c a l  cone. The values of 
pressure d i s t r i b u t i o n  i n  three  cross sec- 
t ions  o f ' t h e  model 2 when M=0.58 are  shown 
i n  f igure  2. The f i r s t  cross sect ion i s  
shown by black signs,  the second by the 
marked broken l i n e ,  and the t h i r d  by l i g h t  
c i r c l e s .  
generatrixes i s  most c l e a r l y  pronounced 
for  subsonic flow. In  t h i s  case, on most 
of t h e  cone surface (except f o r  the  region 
near the major semiaxis), when t h e  angle 
of a t tack  i s  equal t o  0, the  pos i t ive  
value of the  pressure coef f ic ien t  near the  
nose i s  replaced with s t a t i c  pressure i n  
the region of t h e  second sect ion and a t  
the t a i l  p a r t  c reaches negative values. 

The pressure drop along the 

P 

Experimental data f o r  Model 6 a t  M= 
1.19 ( c i r c l e s )  are  shown i n  f igure  3. A t  
low supersonic v e l o c i t i e s  the disrupt ion 
of conic flow may be produced by the ac t ion  
of the boundary layer .  The boundary layer  
which i s  b u i l t  up on the cone pushes back 

Figure 1. the gas flow and d i s t o r t s  the  shock wave 
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Figure 2. Figure 3. 

near the apex of the  cone. I n  view of t h i s  it becomes obvious t h a t  the l o c a l  
and t o t a l  aerodynamic c h a r a c t e r i s t i c s  of conic nonaxially symmetric bod-ies at. 
subsonic and t ransonic  ve loc i t ies  depends not  only on the parameters t and 8 

but a l s o  on the r e l a t i v e  aspect r a t i o  of the  body. 

As  the angle of a t tack  i s  increased t h e  maximum pressure i s  displaced from 
the forward generatr ix  towards the  middle of the windward s ide of the cone 
(Model 5; M=3.0; f i g .  4). The flow expands as we move from t h e  windward s ide 
t o  t h e  leeward s ide but  the magnitude of t h i s  expansion, compared with the mag- 
nitude of contraction, decreases with the angle of a t tack.  When the angle of 
a t tack  exceeds ha l f  of the apex angle i n  t h e  plane of the  minor axis ,  the 
pressure d i s t r i b u t i o n  curve on the leeward side of the cone changes i t s  shape 
and pressure i s  reestablished i n  t h e  d i rec t ion  towards $=O ( f igs .  2-4). I n  or- 
d e r  t o  v isua l ize  the  flow on t h e  surface, experiments were conducted a t  M=3 by 
coating t h e  model with a mixture of soot and o i l .  A s  an example we s h a l l  con- 
s i d e r  the flow p ic ture  over one half  of Model 6 ($=0-180°) with an angle of a t -  
t ack  equal  t o  17'. A t  the  c e n t r a l  p a r t  of the windward s ide t h e  streamlines 
formed by soot p a r t i c l e s  almost coincide with the  generatr ixes  of the cone. 
S t a r t i n g  with y=16oo there  i s  a noticeable def lec t ion  of the streamlines to- 
wards  the leeward s ide and i n  the plane of the major ax is  t h e  angle between the 
s t reamlines  and generatr ix  reaches a value of approximately 40". 

/132 

When we pass t o  t h e  leeward s i d e  t h i s  deviat ion increases up t o  approx- 
imately 6 5 O ,  when$=63', where there i s  a c l e a r l y  defined s t r a i g h t  l i n e  coin- 
ciding w i t h  the  generatr ix .  

On t h e  leeward s ide of t h e  cone w e  can a l so  not ice  the spreading of the 
stream threads from the l i n e  when $=O. 
$=63', the  angle between the streamlines and the generatr ix  i s  approximately 
equal t o  20'. 
layers of l i q u i d  mass which flow from the stagnation zone, by the breaking away 

When we approach the  breakaway l i n e  a t  

This p ic ture  of the flow i s  explained by the increase i n  the 
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of the flow from the leeward s ide and by the formation of symmetric vortexes a t  
the apex of the cone. The vortexes move along the  surface towards the base of 
the cone and form vortex regions. We should point  out t h a t ,  depending on the 
shape of the  body, the angle of a t tack  and t h e  Mach number M, the nature of the 
flow on the  leeward s ide var ies  and i n  the breakaway zone we may have flow with 
odd number of vortex p a i r  regions which a re  separated by the generatr ixes  on 
the surface of the  cone. On one s ide of each region there  i s  a spreading of 
the streamlines while on the other  s ide w e  can c l e a r l y  see a l i n e  where the 
flow converges. The r e t u r n  flow towards the cone produced by the discharge 
f r o m  the breakaway zone and by the vortexes, i s  responsible f o r  the  above pres- 
sure increase a t  the  c e n t r a l  p a r t  of the leeward side. I n  t h i s  case the  j e t  of 
l iqu id  converging from the ex terna l  flow w i l l  a l s o  increase the magnitudes of 
l o c a l  thermal f luxes i n  t h e  case of hypersonic ve loc i t ies .  

Tests with a tilt angle of ~ 4 5 "  were carr ied out  a t  Mach numbers ~ = 0 . 3 8  
and 3.0. Figure 5 shows the values of pressure coef f ic ien ts  on t h e  surface of 
an e l l i p t i c a l  cone with parameters k 0 . 5 ,  S=30° and M=3.O. For a l l  of the t e s t  
models and the range of angles of a t tack from 0 t o  15' the maximum pressure i s  
establ ished when $=90-120°. 
decreases and there  i s  an ins igni f icant  increase i n  c i n  the region $=230-260". 

A s  the  angle Jr  i s  increased fur ther  the pressure 

P 

The nature of pressure d i s t r i b u t i o n  f o r  s l i p  angles f k O - l ' j o  can be seen 
i n  f igure  6 which presents  experimental data f o r  Model 5 a t  M=3.O. 
angle i s  increased there  i s  a subs tan t ia l  pressure increase i n  t h e  region of 
the major axis (Jr=90°). 

/133 
As the  s l i p  

Below, the  experimental r e s u l t s  are compared with t h e o r e t i c a l  calculat ions.  
I n  solving the problem of flow around an e l l i p t i c a l  cone with a subsonic lead- 
i n g  edge we used a s e r i e s  of approximate methods, most of which u t i l i z e  t h e  
l i n e a r i z a t i o n  of the  exact equations of gasdynamics. I n  1947 Squire ( r e f .  3) 

0 

Figure 4. Figure 5 .  
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used a spec ia l  system of coordinates t o  show 
t h a t ,  i n  the f i rs t  approximation, the  pressure 
i s  constant along the span of a t h i n  cone 

4 13 4 cp = 2ab (In 8. - I) + pzu*b (y In pa :- 2) 
(p' = M' - I) 

Here M i s  the Mach number of the unper- 
turbed f low; a and b are  the major and minor 
semiaxes of the  e l l i p s e  which i s  s i tuated a t  a 
u n i t  dis tance from the apex of the cone. The 
design value of cp (ref .  3) f o r  Model 4 a t  

Md.47 i s  shown by t h e  dotted l i n e  i n  f igure 3. 
Figure 6. 

Wide appl icat ion has been made of the 
theory of t h i n  bodies which, l i k e  the l i n e a r  
theory, i s  based on the solut ion of the wave equation involving c e r t a i n  simpli-  
f i c a t i o n s  which make it possible t o  reduce t h e  volume of calculat ions when com- 
puting the  f l a w  p a s t  s p e c i f i c  bodies. The work of Ward (ref. 4) proposes a 
general  l inear ized  solut ion of the  f i r s t  order f o r  flow around t h i n  bodies of 
a r b i t r a r y  cross section. The application of t h i s  method makes it possible t o  
determine the two-dimensional flow potent ia l  f o r  an incompressable f l u i d  i n  a 
plane perpendicular t o  the motion of the body., The theory of t h i n  bodies (ref. 
4) w a s  a l s o  applied i n  references 5 and 6 t o  t h i n  cones of e l l i p t i c  cross  sec- 
t ion .  
perturbed flow i n  the following form: 

By using the equations of motion we can wri te  the p o t e n t i a l  cp of the 

where y i s  the adiabat ic  constant. The so lu t ion  of the f i rs t  order does not 
take i n t o  account any of the  terms i n  the r i g h t  s i d e  of equation (1). 
pressure coef f ic ien t  on the surface of an e l l i p t i c a l  cone has the form 

The 

Here 7\ i s  the nonorthogonal e l l i p t i c a l  coordinate. 

A refined so lu t ion  based on the theory of a t h i n  body, presented i n  re fer -  

2 ence 7, takes  i n t o  account the l i n e a r  term B cqzz i n  the r i g h t  s ide of equation 

(1). The equation f o r  the pressure coef f ic ien t  contains a term which i s  ob- 
ta ined  from the so lu t ion  of the f i rs t  order and an addi t ional  term which re- 
f i n e s  t h i s .  so lu t ion  

5 



$he second order so lu t ion  given by Van-Dyke ( re f .  8) a l s o  contains non- 

l i n e a r  terms i n  equation (1) of the  form 2M 2 (cpxcpxz+'Py'Py,)+(y+l)M4~,~,,. The 

pressure coef f ic ine t  is  wr i t ten  i n  the  form: 

The t h e o r e t i c a l  curves from the f i r s t  order solut ion (shown by the  broken 1134 
l i n e )  and those obtained from refined solidtior? (shown by dot  dash l i n e ) ,  have 
been computed f o r  Model 6 a t  M d . 1 9  ( c i r c l e s )  and f o r  Model 4 a t  IvI=i.b7 
(squares).  
l i n e a r  terms which are  taken i n t o  account i n  the second order solut ion (shown 
by a dot  with 2 dashes), increase the  value of cp compared with the refined 
solut ion.  

These curves l i e  below the  experimental curves ( f i g .  3 ) .  The non- 

It has been pointed out i n  reference 8 t h a t  there  i s  good agreement between 
t h e o r e t i c a l  r e s u l t s  and experimental r e s u l t s  f o r  two t h i n  e l l i p t i c a l  cones 
0.2, €=30° and tZ0.1, €=30°) a t  M d . 4 1  ( re f .  9). 
f i r s t  of these models ( t r i a n g l e s  i n  f igure  3)  a r e  i n  good agreement with data 
f o r  Model 4. Chapkis ( re f .  10) investigated the flow pas t  an e l l i p t i c a l  cone 
with parameters tz0.3, ~ = 1 2 ~ 1 0 f  a t  ~ = 5 . 8  and compared the data with those ob- 
ta ined  by means of the nonlinear theory ( re f .  8) .  
t h i s  case t h e  forward generatr ix  of the cone extends beyond the Mach cone, the 
author s t i l l  ind ica tes  t h a t  there  i s  a s a t i s f a c t o r y  agreement between theory 
and experiment. 

(t= 
The experimental d a t a  f o r  t h e  

I n  s p i t e  of the f a c t  t h a t  i n  

Solutions based on the theory of t h e  t h i n  wing have been obtained i n  re f -  
erences 11 and 12 f o r  small angles of a t tack.  
experimental data  f o r  Model 6 ( c i r c l e s )  i n  a flow with Mach number M=3.O and 
angle of a t tack  *loo, with the computed value of the supplementary pressure 
coef f ic ien t  Ac 

a t t a c k  ( r e f .  12)  

Figure 7 shows a comparison of 

(dot-dash), which takes i n t o  account the e f f e c t  of the angle of P 

a2sin q + a ( a  + b )  cos3 q 
V2 
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The computed values f o r  Acp are approx- a3 

imately 20 percent grea te r  than the experi- 
mental values over a la rge  region of the 
cone surface, except f o r  the region close t o  
the major semiaxis. 

011 
The theory of the t h i n  body i s  applica- 

b l e  t o  flow around t h i n  e l l i p t i c a l  cones for 
a l imited range of Mach numbers. The lower 0 
boundary of t h i s  range i s  determined by the 
beginning of supersonic flow around cones 
with the associated shock wave, while the up- 
per boundary i s  determined by the e x i t  of the 
leading cone generatr ix  beyond the cone of 
perturbations.  The comparison of theoretical-Q2 
and experimental data  presented above, shows 
t h a t  f o r  t h i n  e l l i p t i c a l  cones within the 
l imited range of Mach numbers, the nonlinear 
theory of a t h i n  body i s  i n  s a t i s f a c t o r y  agreement with experimental r e s u l t s .  
Fioweve’r, 2s  we can see from f igure  1 (Model 6), t h a t  a s  the flow veloci ty  in-  
creases and the cone thickness increases the t h e o r e t i c a l  values l i e  subs tan t ia l -  
l y  below the experimental values. 

Figure 7. 

I n  the  works of F e r r i  (refs. 13  and 14)  a method w a s  proposed which involved 

The equa- 
l inear ized  c h a r a c t e r i s t i c s .  The flow near an e l l i p t i c a l  cone i s  considered as  
a per turbat ion with respect  t o  the known flow near the  c i r c u l a r  cone. 
t i o n s  which determine the veloci ty  components of the l inear ized  flow are  solved 
by the  method of successive approximations. Sa t i s fac tory  r e s u l t s  a re  obtained 
i n  the case when the shape of the body’s cross sec t ion  d i f f e r s  l i t t l e  from t h a t  
of a c i r c u l a r  cone. 

The method of l inear ized  charac te r i s t ics  was extended t o  flow pas t  conic 
bodies a t  an angle of a t tack  ( re f .  15). 
t o  ob ta in  r e l a t i v e l y  simple equations. 
approximate solut ion i s  used f o r  the hypersonic flow pas t  a c i r c u l a r  cone. 
A. L. Gonor ( r e f .  16) applied the method of expansion i n  terms of the small 
parameter ( r e f .  17) t o  t h e  problem of flow pas t  an a r b i t r a r y  conical body a t  
supersonic veloci ty .  The author established t h a t  the pressure a t  the wal l  d i f -  
f e r s  from the corresponding value given by the Newton theory only by one term 
which character izes  the centr i fugal  force due t o  the  transverse gas flow. 
reference 18 the method of i n t e g r a l  re la t ionships  w a s  used t o  compute the hyper- 
sonic  flow p a s t  an e l l i p t i c  cone. Cheng ( re f .  1 9 )  investigated the flow i n  the 
neighborhood of the  surface of a three-dimensional pointed body; the so lu t ion  
was obtained by means of s e r i e s  containing two parameters. Reference 20 pro- /135 
posed the  development of methods given i n  references 1 4  and 10  and obtained an 
a n a l y t i c a l  so lu t ion  f o r  the flow past  th ick  nonaxially symmetric conic bodies 
i n  a hypersonic flow of gas.  The numerical so lu t ion  of the inverse problem on 
the  supersonic flow p a s t  conic bodies without a x i a l  symmetry was examined by 
Briggs.  

I n  reference 10  t h i s  method was applied 
I n  the appl icat ion of t h i s  method an 

I n  

A t  high supersonic ve loc i t ies  Newton’s law i s  used t o  determine the 
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aerodynamic c h a r a c t e r i s t i c s  of bodies i n  the flow approximately. The pressure 
coeff ic ient  on the  surface of an e l l i p t i c a l  cone computed by means of Newton's 
formula has the form 

( 1 I + (a-:bZ - I) sin* Ip cos a - b-lsin a cos rp)* = 2 - -  - -  - - 
1 + b-L f (a-zba - 1) (1 -J- 0 + P sina 9 

I n  f igure 7 the experimental r e s u l t s  of reference 2 ( t r i a n g l e s )  and the re-  
s u l t s  of reference 14 (crosses)  are compared with calculated r e s u l t s  of r e f e r -  
ence 18 (so l id  curve) per ta ining t o  the flow p a s t  an e l l i p t i c a l  cone with para- 
meters t=o.56, €=22' a t  M=6.  
two dashes) and experimental data  (squares, a=O and 14')(ref. 10) a t  M=5.8 and 
a l s o  the computations based on Newton's theory (broken l i n e )  f o r  a cone with 
kO.5, 6=12'101. 
the surface element i s  small, Newton's theory y ie lds  values which are  substan- 
t i a l l y  below experimental values. I f ,  however, the flow veloci ty  component 
along the normal t o  the  surface corresponds t o  a Mach number of the order of 
un i ty  or grea ter ,  then the agreement between t h e o r e t i c a l  and experimental da ta  
i s  b e t t e r .  Figure 7 a l so  shows the  computation r e s u l t s  obtained by F e r r i  ( re f .  
14) a t  M=5.42 (dotted l i n e )  and the  theore t ica l  curve f o r  the  f i r s t  A. L.  Gonor 

The same f igure shows the t h e o r e t i c a l  (dot with 

When the  angle between the d i rec t ion  of the incident  flow and 

appraxization (dotted l i n e  with crosses)  (ref. 16)  a t  M = a  f o r  a cone with k O . 5 ,  
G=14' 30 1 . 

I n  the region of moderate supersonic v e l o c i t i e s  (M=2-4) where the solut ions 
based on the  l i n e a r i z a t i o n  of the equations of 
t i o n s  which a r e  u t i l i z e d  a t  hypersonic ve loc i t ies ,  a re  not i n  s a t i s f a c t o r y  
agreement with experimental data, simple methods can be used f o r  the approximate 
determination of aerodynamic charac te r i s t ics :  the method of tangent ia l  cones, 
the method of equivalent cones and the "refined method of equivalent cones." In  
the method of tangent ia l  or equivalent cones the pressure on each surface e le -  
ment of an  a r b i t r a r y  conical body i s  determined from data  on the flow p a s t  a 
c i r c u l a r  cone with a zero angle of attack; i n  the f irst  case the c i r c u l a r  cone 
i s  tangent t o  the body a t  the considered cross sec t ion  while i n  the second case 
the c i r c u l a r  cone has the same normal veloci ty  component of the incident  flow 
with respec t  t o  the  surface element as the a r b i t r a r y  body and the apex ha l f -  
angle of the  c i r c u l a r  cone i s  determined from the known value of the pressure 
c o e f f i c i e n t  (2) .  
of t h e  shock wave i s  no longer ident i f ied  with the shape of the  body. 
values obtained by the method of loca l  cones (dot dash l i n e )  and by the method 
of equivalent  cones (dots with 2 dashes), exceed the experimental values i n  the 
region of the major axis and are  less than the experimental values i n  the  region 
of t h e  minor ax is  (Model 1 i n  f igure 1). 
fac tory  agreement with experimental data only i n  the case of bodies which d i f f e r  
i n s i g n i f i c a n t l y  from a c i r c u l a r  cone because each element of the surface i s  con- 
s idered i r respec t ive  of the body's shape. I n  the  "refined method of equivalent 
cones" ( r e f .  21) it i s  assumed t h a t  the pressure d i s t r i b u t i o n  on the e l l i p t i c a l  

gasdynamics, a s  wel l  a s  solu- 

I n  t h i s  case Newton's equations are  refined because the shape 
The 

Both of these methods are i n  satis- 

( I ) - c ( ~ )  (where c6') i s  the pressure computed cone depends on the quant i ty  6cp=cp P 

by t h e  method of equivalent cones, c ( ~ )  i s  the average value of t h i s  pressure) ,  P 

and on the Mach number M 1  a t  the surface of the c i r c u l a r  cone with average 

8 
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, 

(*I. 
P pressure equal t o  c The pressure coef f ic ien t  has the form 

By considering f igure  1 we can see t h a t  t h i s  method (dotted curve) i s  i n  
b e t t e r  agreement with experimental data than the method,of tangent ia l  and equiv- 
a l e n t  cones. 

I n  the t e s t s ,  the  average bottom pressure was measured by means of 2 vent 
The magnitude of the  bottom pressure coef f ic ien t  c p ( g )  as  a function tubes. 

of the Mach number M of the  incident  flow i s  shown i n  f igure  8. 
experimental data ,  the same f igure shows a broken curve f o r  the  l imi t ing  value 

I n  addi t ion t o  

0.f the  bottom pressure coef f ic ien t  ~ ~ ( ~ ) = - 1 . 4 3  G'. 

the  value of the  bottom pressure i s  decreased i n s i g n i f i c a n t l y  a s  t and C are  de- 
creased and as  the angle of a t tack  i s  increased. 

For a l l  of the t es t  models 

The flow pas t  the model w a s  photographed by means of a telescope device i n  
the plane of t h e  minor axis (cp=O) and i n  the plane c p 4 5 O ,  and a l s o  i n  the plane 
of the major ax is  ( ~ 9 0 ' ) .  

(where W b  i s  the angle formed by the  compression shock and the cone angle i n  the 

Figure 9 shows the values of the angles W b  and wa 

plane of the  minor axis ,  CUa i s  the angle formed i n  the plane of the major a x i s )  

as a m n c t i o n  of a t tack  a and the s l i p  angle B a t  M=3.0. 

Optical  invest igat ions a t  small supersonic v e l o c i t i e s  showed t h a t  the shock 
wave f r o n t  f o r  a l l  t e s t  models r e t a i n s  the shape of an almost regular c i r c u l a r  
cone and the l o c a l  angle of t h e  compression shock t o  a la rge  degree depends on 
the d i s t r i b u t i o n  of the area along the axis of the body r a t h e r  than on the shape 
of the t ransverse body cross section. A s  the flow ve loc i ty  i s  increased the 
shape of t h e  shock wave i n  the  sec t ion  normal t o  the incident  flow approaches 
the shape of the body and the compression shock assumes a conical nonaxially 
symmetrical shape. 

I 

Figure 8. 

- . .  

Figure 9. 
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Wind -tunnel invee?;ga?ion of the flow past six models of 07 

elliptic cene at Mach nm-5ers cE q. 53, 0.07, 1.19, 1.47, and 3 . 3 ,  
and ‘tei.caid- n.umb?rs .a;ging from 1.2 x ,.& to 3 . 0  x 106. Tho 
F-F*: re distributions at the surface of the r-ode-a -.A ;Le quantities 
-*xrac*erieing the flow prarneters in the w o r k i g  s?:t!cn of ?he 
.unnel are plotted *zd c ! i se .~~ee .1 ,  F o r  Lt= Jrr-a‘i supers -.mc Mach 
-,umbers, it i s  Colind that the shock wa\-e *Toni cor a:; +he models 
employed has tht form of an slrnost -+??‘a- ri r..:lz- -P an6 +&.at 
%e local ang!e of a shock wave Tf*p?r,ds mare nn -he r’:s .- ic~t;o-~ of 
+&e cross sedan along t ? e  ?x’s of the ‘3ofix- +ha-? cn t he  -’iaps of th.e 
body’s cross s e c t m ? .  Wzth r”cre1qing ?&a :1 11 F5e - ,  +: c f ~ p t ?  of 
the shock wave in the crcss secti’3-i xmrm?-‘ tn L k  * n w  e‘ rectiori - Z‘ 

__ 

approaches that of the body. * A  



/ 

1 
* 

I 4  

I 

I t --- 
! 

-? / b  



- t  
.. 



A 
1 -  

C '  . . 

my--  
&--- 

do' 

..-r - 



A 

7 
I 

b 



134 Mu. AB CCCP, N e e  x h  Y .u.. 1, I#6 

c 



3 . 

P 
t, 

k 



n 

I 



. 


